Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 863
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20230240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747786

RESUMO

There are few studies related to the biological and ecological aspects of the glass snake, a limbless lizard and with a wide geographic distribution. The aim of this study was to analyze the locomotion mode of specimens of Ophiodes cf. fragilis in different substrates and to investigate the morphological adaptations associated with this type of behavior. We observed that the analyzed specimens presented slide-push locomotion modes and lateral undulation in different substrates, using their hind limbs to aid locomotion in three of the four substrates analyzed. The bones of the hind limbs (proximal - femur - and distal - tibia and fibula) were present and highly reduced and the femur is connected to a thin pelvic girdle. Our data support that hind limbs observed in species of this genus are reduced rather than vestigial. The costocutaneous musculature was macroscopically absent. This is the first study of locomotor behavior and morphology associated with locomotion in Ophiodes, providing important information for studies on morphological evolution in the genus.


Assuntos
Adaptação Fisiológica , Lagartos , Locomoção , Animais , Lagartos/anatomia & histologia , Lagartos/fisiologia , Lagartos/classificação , Locomoção/fisiologia , Adaptação Fisiológica/fisiologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia
2.
J Exp Biol ; 227(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634230

RESUMO

Distantly related mammals (e.g. jerboa, tarsiers, kangaroos) have convergently evolved elongated hindlimbs relative to body size. Limb elongation is hypothesized to make these species more effective jumpers by increasing their kinetic energy output (through greater forces or acceleration distances), thereby increasing take-off velocity and jump distance. This hypothesis, however, has rarely been tested at the population level, where natural selection operates. We examined the relationship between limb length, muscular traits and dynamics using Longshanks mice, which were selectively bred over 22 generations for longer tibiae. Longshanks mice have approximately 15% longer tibiae and 10% longer femora compared with random-bred Control mice from the same genetic background. We collected in vivo measures of locomotor kinematics and force production, in combination with behavioral data and muscle morphology, to examine how changes in bone and muscle structure observed in Longshanks mice affect their hindlimb dynamics during jumping and clambering. Longshanks mice achieved higher mean and maximum lunge-jump heights than Control mice. When jumping to a standardized height (14 cm), Longshanks mice had lower maximum ground reaction forces, prolonged contact times and greater impulses, without significant differences in average force, power or whole-body velocity. While Longshanks mice have longer plantarflexor muscle bodies and tendons than Control mice, there were no consistent differences in muscular cross-sectional area or overall muscle volume; improved lunge-jumping performance in Longshanks mice is not accomplished by simply possessing larger muscles. Independent of other morphological or behavioral changes, our results point to the benefit of longer hindlimbs for performing dynamic locomotion.


Assuntos
Membro Posterior , Locomoção , Animais , Membro Posterior/fisiologia , Membro Posterior/anatomia & histologia , Fenômenos Biomecânicos , Camundongos/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Masculino , Feminino , Tíbia/fisiologia , Tíbia/anatomia & histologia , Fêmur/fisiologia , Fêmur/anatomia & histologia
3.
Vet Comp Orthop Traumatol ; 37(3): 122-129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224952

RESUMO

OBJECTIVE: The aim of this study was to examine the position of the proximal manica flexoria and the proximal scutum under different grades of fetlock joint extension and to describe measurements and compare findings between equine fore- and hindlimbs. STUDY DESIGN: It was an observational study. RESULTS: During fetlock joint extension, the proximal manica flexoria and the proximal scutum displace distally relative to the palmar/plantar extent of the sagittal ridge of the cannon bone. The proximal manica flexoria is further displaced distal to the proximal scutum within the fetlock canal. No significant differences were identified between fore- and hindlimbs at different levels of fetlock joint extension. The proximal scutum was observed to be longer and thicker and the tendinous part of the manica flexoria was longer in forelimbs compared with hindlimbs. CONCLUSION AND CLINICAL RELEVANCE: The described findings contribute to the understanding of the pathogenesis of manica flexoria tearing. The fact that the proximal scutum and the tendinous part of the manica flexoria are shorter in the hindlimb might explain why the manica flexoria is more likely to get caught on the proximal aspect of the scutum and develop a tear in the equine hindlimb.


Assuntos
Membro Anterior , Membro Posterior , Animais , Cavalos/anatomia & histologia , Cavalos/fisiologia , Membro Posterior/anatomia & histologia , Membro Anterior/anatomia & histologia , Fenômenos Biomecânicos , Articulações/anatomia & histologia , Articulações/fisiologia , Feminino , Masculino
4.
J Anat ; 244(4): 557-593, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38037880

RESUMO

Piatnitzkysauridae were Jurassic theropods that represented the earliest diverging branch of Megalosauroidea, being one of the earliest lineages to have evolved moderate body size. This clade's typical body size and some unusual anatomical features raise questions about locomotor function and specializations to aid in body support; and other palaeobiological issues. Biomechanical models and simulations can illuminate how extinct animals may have moved, but require anatomical data as inputs. With a phylogenetic context, osteological evidence, and neontological data on anatomy, it is possible to infer the musculature of extinct taxa. Here, we reconstructed the hindlimb musculature of Piatnitzkysauridae (Condorraptor, Marshosaurus, and Piatnitzkysaurus). We chose this clade for future usage in biomechanics, for comparisons with myological reconstructions of other theropods, and for the resulting evolutionary implications of our reconstructions; differential preservation affects these inferences, so we discuss these issues as well. We considered 32 muscles in total: for Piatnitzkysaurus, the attachments of 29 muscles could be inferred based on the osteological correlates; meanwhile, in Condorraptor and Marshosaurus, we respectively inferred 21 and 12 muscles. We found great anatomical similarity within Piatnitzkysauridae, but differences such as the origin of M. ambiens and size of M. caudofemoralis brevis are present. Similarities were evident with Aves, such as the division of the M. iliofemoralis externus and M. iliotrochantericus caudalis and a broad depression for the M. gastrocnemius pars medialis origin on the cnemial crest. Nevertheless, we infer plesiomorphic features such as the origins of M. puboischiofemoralis internus 1 around the "cuppedicus" fossa and M. ischiotrochantericus medially on the ischium. As the first attempt to reconstruct muscles in early tetanurans, our study allows a more complete understanding of myological evolution in theropod pelvic appendages.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Extremidade Inferior , Membro Posterior/anatomia & histologia , Dinossauros/anatomia & histologia , Músculo Esquelético/anatomia & histologia
5.
Anat Rec (Hoboken) ; 307(5): 1826-1896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37727023

RESUMO

This paper is the second in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character-state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically "mammalian" have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies.


Assuntos
Evolução Biológica , Fósseis , Animais , Filogenia , Mamíferos/fisiologia , Membro Posterior/anatomia & histologia , Músculos , Articulação do Joelho/anatomia & histologia
6.
Anat Histol Embryol ; 53(1): e13004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994544

RESUMO

The bone texture of Rhea americana was evaluated through the examination of a postnatal ontogenetic series. The hind limb bone surfaces of specimens of one, three and five months old, and adults were compared to characterize each stage according to the morphological features generated by their differential ossification. The results suggest a similar process of tissue maturation concerning neognathous birds, although with some differences. A spongy or striated surface with abundant pores in the femur and longitudinal grooves in the tibiotarsus and tarsometatarsus characterizes chicks. Vascularity decreases, and the bone texture gradually changes acquiring a more homogeneous surface, to eventually reach the smooth appearance of adult bones. The establishment of particular textures corresponding to different bones and ontogenetic stages permits the accurate interpretation of remains in ecological, archaeological and paleontological contexts in which bones are fragmented and/or incomplete.


Assuntos
Paleógnatas , Reiformes , Animais , Reiformes/anatomia & histologia , Aves , Osso e Ossos , Membro Posterior/anatomia & histologia
7.
J Anat ; 244(5): 749-791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38104997

RESUMO

The anatomy of the archosaurian pelvis and hindlimb has adopted a diversity of successful configurations allowing a wide range of postures during the evolution of the group (e.g., erect, sprawling). For this reason, thorough studies of the structure and function of the pelvic and hindlimb musculature of crocodylians are required and provide the possibility to expand their implications for the evolution of archosaurian locomotion, as well as to identify potential new characters based on muscles and their bony correlates. In this study, we give a detailed description of the pelvic and hindlimb musculature of the South American alligator Caiman yacare, providing comprehensive novel information regarding lower limb and autopodial muscles. Particularly for the pedal muscles, we propose a new classification for the dorsal and ventral muscles of the autopodium based on the organisation of these muscles in successive layers. We have studied the myology in a global background in which we have compared the Caiman yacare musculature with other crocodylians. In this sense, differences in the arrangement of m. flexor tibialis internus 1, m. flexor tibialis externus, m. iliofibularis, mm. puboischiofemorales internii 1 and 2, between Ca. yacare and other crocodylians were found. We also discuss the muscle attachments that have different bony correlates among the crocodylian species and their morphological variation. Most of the correlates did not exhibit great variation among the species compared. The majority of the recognised correlates were identified in the pelvic girdle; additionally, some bony correlates associated with the pedal muscles are highlighted here for the first time. This research provides a wide framework for future studies on comparative anatomy and functional morphology, which could contribute to improving the character definition used in phylogenetic analyses and to understand the patterns of musculoskeletal hindlimb evolution.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/anatomia & histologia , Filogenia , Músculo Esquelético/anatomia & histologia , Extremidade Inferior , Membro Posterior/anatomia & histologia , Pelve/anatomia & histologia
8.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37990942

RESUMO

The physical properties of the environment impose strong selection on organisms and their form-function relationships. In water and on land, selective pressures differ, with water being more viscous and denser than air, and gravity being the most important external force on land for relatively large animals such as vertebrates. These different properties of the environment could drive variation in the design and mechanics of the locomotor system of organisms. Animals that use multiple environments can consequently exhibit locomotion conflicts between the demands imposed by the media, leading to potential trade-offs. Here, we tested for the presence of such locomotor trade-offs depending on the environment (water or land) in a largely aquatic frog, Xenopus laevis. We focused on terrestrial and aquatic exertion capacity (time and distance swum or jumped until exhaustion) and aquatic and terrestrial burst capacity (maximal instantaneous swimming velocity and maximal force jump) given the ecological relevance of these traits. We tested these performance traits for trade-offs, depending on environments (water versus air) and locomotor modes (i.e. exertion and burst performance). Finally, we assessed the contribution of morphological traits to each performance trait. Our data show no trade-offs between the performance traits and between the environments, suggesting that X. laevis is equally good at swimming and jumping thanks to the same underlying morphological specialisations. We did observe, however, that morphological predictors differed depending on the environment, with variation in head shape and forelimb length being good predictors for aquatic locomotion and variation in hindlimb and forelimb segments predicting variation in jumping performance on land.


Assuntos
Locomoção , Natação , Animais , Xenopus laevis , Membro Posterior/anatomia & histologia , Água
9.
Commun Biol ; 6(1): 781, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582975

RESUMO

The ability to manipulate objects with limbs has evolved repeatedly among land tetrapods. Several selective forces have been proposed to explain the emergence of forelimb manipulation, however, work has been largely restricted to mammals, which prevents the testing of evolutionary hypotheses in a comprehensive evolutionary framework. In birds, forelimbs have gained the exclusive function of flight, with grasping transferred predominantly to the beak. In some birds, the feet are also used in manipulative tasks and appear to share some features with manual grasping and prehension in mammals, but this has not been systematically investigated. Here we use large online repositories of photographs and videos to quantify foot manipulative skills across a large sample of bird species (>1000 species). Our results show that a complex interaction between niche, diet and phylogeny drive the evolution of manipulative skills with the feet in birds. Furthermore, we provide strong support for the proposition that an arboreal niche is a key element in the evolution of manipulation in land vertebrates. Our systematic comparison of foot use in birds provides a solid base for understanding morphological and neural adaptations for foot use in birds, and for studying the convergent evolution of manipulative skills in birds and mammals.


Assuntos
Aves , Vertebrados , Animais , Aves/anatomia & histologia , Membro Posterior/anatomia & histologia , Locomoção , Mamíferos
10.
Anat Rec (Hoboken) ; 306(10): 2587-2596, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36881545

RESUMO

The American barn owl is a nocturnal bird of prey in which hind limb movements are a key factor in obtaining food; however, the architectural properties of its hind limb muscles have not been studied. This study sought to identify functional trends in the Tyto furcata hindlimb muscles by studying muscular architecture. The architectural parameters of the selected hip, knee, ankle, and digit muscles were studied in three specimens of the Tyto furcata and joint muscular proportions with an additional dataset were calculated. Previously published information on Asio otus was used for comparison. The flexor muscles of the digits had the highest muscle mass. Regarding architectural parameters, the main flexor of the digits (flexor digitorum longus) and the muscles that extend the knee and ankle joints (femorotibialis and gastrocnemius) showed a high physiological cross-sectional area (PCSA) and short fibers, allowing powerful digit flexion and knee and ankle extension. These mentioned features are in accordance with hunting behavior, in which prey capture is not only closely linked to the flexion of the digits but also to the movements of the ankle. During hunting, the distal hind limb is flexed and then fully extended at the moment of contact with the prey, whereas the digits are close to grasping the prey. The hip muscles showed a predominance of extensors over flexors, which were more massive, with parallel fibers and without tendons or short fibers. These features lead to a higher capacity to generate velocity to the detriment of forces, as indicated by the high values of the architectural index, their relatively low PCSA, and short or intermediate fiber length, which enhance the control of the joint positions and muscle length. Compared to Asio otus, Tyto furcata showed longer fibers; however, the relationship between fiber length and PCSA was similar for both species.


Assuntos
Estrigiformes , Animais , Estrigiformes/anatomia & histologia , Estrigiformes/fisiologia , Músculo Esquelético/anatomia & histologia , Membro Posterior/anatomia & histologia , Extremidade Inferior , Articulação do Joelho
11.
Cells Tissues Organs ; 212(3): 215-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35203082

RESUMO

Many questions in human movement sciences are addressed by exploiting the advantages of animal models. However, a 3D graphical model of the musculoskeletal system of the frequently used rat model that includes a sufficient level of detail does not exist. Therefore, the aim of the present work was to develop an freely accessible 3D graphical model of the rat hindlimb. Using the anatomical data of the Wistar rat (Mus norvegicus albinus) published by Greene [1935], a 3D representation of 34 muscles of the hindlimb was drawn. Two models were created, one using muscle-like appearances and one using different colors. Each muscle can be viewed separately or within the context of its synergistic and antagonistic muscles. This model can serve to train new students before starting their experiments but also for producing illustrations of experimental conditions or results. Further development of the model will be needed to equip it with the same advanced functionalities of some of the human anatomy atlases.


Assuntos
Músculo Esquelético , Músculos , Animais , Ratos , Membro Posterior/anatomia & histologia , Modelos Animais , Músculo Esquelético/fisiologia , Ratos Wistar
12.
PLoS One ; 17(9): e0268144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048811

RESUMO

In this study, we use an exceptional skeleton of the pachycephalosaur Stegoceras validum (UALVP 2) to inform a comprehensive appendicular muscle reconstruction of the animal, with the goal of better understanding the functional morphology of the pachycephalosaur postcranial skeleton. We find that S. validum possessed a conservative forelimb musculature, particularly in comparison to early saurischian bipeds. By contrast, the pelvic and hind limb musculature are more derived, reflecting peculiarities of the underlying skeletal anatomy. The iliotibialis, ischiocaudalis, and caudofemoralis muscles have enlarged attachment sites and the caudofemoralis has greater leverage owing to the distal displacement of the fourth trochanter along the femur. These larger muscles, in combination with the wide pelvis and stout hind limbs, produced a stronger, more stable pelvic structure that would have proved advantageous during hypothesized intraspecific head-butting contests. The pelvis may have been further stabilized by enlarged sacroiliac ligaments, which stemmed from the unique medial iliac flange of the pachycephalosaurs. Although the pubis of UALVP 2 is not preserved, the pubes of other pachycephalosaurs are highly reduced. The puboischiofemoralis musculature was likely also reduced accordingly, and compensated for by the aforementioned improved pelvic musculature.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Membro Posterior/anatomia & histologia , Extremidade Inferior , Músculo Esquelético/anatomia & histologia , Pelve/anatomia & histologia
13.
Am J Primatol ; 84(8): e23416, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35848101

RESUMO

The knowledge of anatomy and imaging exams emerges as an important tool in the study of evolutionary processes of a species, in the elaboration of diagnosis, and the successful choice of the appropriate clinical and surgical procedures. Therefore, this study aims to describe the osteology of the hind limb of Sapajus libidinosus by means of gross, radiographic, and tomographic images. Four cadavers were used in the macroscopic analysis and five animals for the imaging exams, of which four were eventually euthanized and added to the macroscopic study. For imaging exams, they were kept anesthetized. All bones of the hind limb were documented, their structures were described, and compared with data in the literature from human and nonhuman primates. We have performed Student's t test for independent samples. There was no statistical difference between the sexes regarding the length of the hind limb bones. The coxal bone was largely well described using imaging methods. A small penile bone was present at the tip of the penis and it could be identified by all analysis methods. The femur, as well as the tibia and fibula, were not well portrayed in their proximal and distal epiphyses by radiography (Rx). However, they were well identified on tomography. No third trochanter was observed in the femur and the patella had a triangular shape. All the structures described by gross anatomy of the tarsus and metatarsus could be identified by Rx and tomography. More subtle structures, such as the popliteal notch on the tibia, and the gluteal tuberosity pectineal line and facies aspera on the coxal bone, were not identified by medical imaging. S. libidinosus presented anatomical characteristics that were similar to those of larger New World and Old World monkeys, including man. This suggests it's value as an experimental model for studies in recent primates.


Assuntos
Cebinae , Animais , Membro Posterior/anatomia & histologia , Masculino
14.
J Morphol ; 283(6): 875-893, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35531925

RESUMO

The avian pelvis plays a critical role in the hindlimb function of birds, connecting the hindlimb and axial skeleton and serving as the major attachment site for proximal hindlimb musculature. To assess how diversification of locomotor modes in birds has impacted the evolution of avian pelvic morphology, we conducted a two-dimensional geometric morphometric analysis of bird pelves in dorsal and lateral views from 163 species (n = 261) across Aves. We investigated the relationships among pelvic shape and ecology, phylogeny, and allometry, and conducted disparity analyses to understand how pelvic morphospace has been explored through the diversification of Aves. We found that while phylogeny was correlated with shape, locomotor categories were significantly discriminated in morphospace in phylogenetically corrected analyses, as was pelvic size. Major shape trends across Aves distinguishing locomotor categories included the relative area of the preacetabular versus postacetabular ilium, how squat or narrow the pelvis is, and the extent of the caudal pelvic border. Birds adapted for hind limb-propelled swimming had particularly distinctive pelves, with narrow, elongated ilia likely useful for holding the hindlimbs close to the body midline and reducing drag. However, ecology and allometry only account for a small proportion of morphological variation, and in general locomotor groups overlapped substantially in morphospace. These results, alongside disparity through time analyses showing widespread convergence in pelvic morphology throughout the Cenozoic, suggest that avian lineages and ecotypes have extensively explored pelvic morphospace, perhaps aided by a loosening of evolutionary constraints following the evolution of forelimb-powered flight.


Assuntos
Aves , Pelve , Animais , Evolução Biológica , Aves/anatomia & histologia , Osso e Ossos , Membro Posterior/anatomia & histologia , Pelve/anatomia & histologia , Filogenia
15.
J Exp Biol ; 225(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35363299

RESUMO

Animals rely on their ability to perform certain tasks sufficiently well to survive, secure mates and reproduce. Performance traits depend on morphology, and so morphological traits should predict performance, yet this relationship is often confounded by multiple competing performance demands. Males and females experience different selection pressures on performance, and the consequent sexual conflict over performance expression can either constrain performance evolution or drive sexual dimorphism in both size and shape. Furthermore, change in a single morphological trait may benefit some performance traits at the expense of others, resulting in functional trade-offs. Identifying general or sex-specific relationships between morphology and performance at the organismal level thus requires a multivariate approach, as individuals are products of both an integrated phenotype and the ecological environment in which they have developed and evolved. We estimated the multivariate morphology→performance gradient in wild-caught, green anoles (Anolis carolinensis) by measuring external morphology and forelimb and hindlimb musculature, and mapping these morphological traits to seven measured performance traits that cover the broad range of ecological challenges faced by these animals (sprint speed, endurance, exertion distance, climbing power, jump power, cling force and bite force). We demonstrate that males and females differ in their multivariate mapping of traits on performance, indicating that sex-specific ecological demands likely shape these relationships, but do not differ in performance integration.


Assuntos
Lagartos , Animais , Evolução Biológica , Força de Mordida , Feminino , Membro Anterior , Membro Posterior/anatomia & histologia , Lagartos/anatomia & histologia , Masculino , Caracteres Sexuais
16.
J Anat ; 241(1): 101-118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118654

RESUMO

The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three-dimensional (3-D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3-D pose (joint or limb configuration) and 3-D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3-D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.


Assuntos
Jacarés e Crocodilos , Evolução Biológica , Jacarés e Crocodilos/anatomia & histologia , Animais , Fenômenos Biomecânicos , Ecossistema , Membro Posterior/anatomia & histologia , Humanos , Extremidade Inferior , Vertebrados
17.
Sci Rep ; 12(1): 1113, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064147

RESUMO

The accessibility of quantitative measurements of joint morphometry depends on appropriate tibial alignment and volume of interest (VOI) selection of joint compartments; often a challenging and time-consuming manual task. In this work, we developed a novel automatic, efficient, and model-invariant image preprocessing pipeline that allows for highly reproducible 3D quantitative morphometric analysis (QMA) of the joint. The pipeline addresses the problem by deploying two modules: an alignment module and a subdivision module. Alignment is achieved by representing the tibia in its basic form using lower degree spherical harmonic basis functions and aligning using principal component analysis. The second module subdivides the joint into lateral and medial VOIs via a watershedding approach based on persistence homology. Multiple repeated micro-computed tomography scans of small (rat) and medium (rabbit) animal knees were processed using the pipeline to demonstrate model invariance. Existing QMA was performed to evaluate the pipeline's ability to generate reproducible measurements. Intraclass correlation coefficient and mean-normalised root-mean-squared error of more than 0.75 and lower than 9.5%, respectively, were achieved for joint centre of mass, joint contact area under virtual loading, joint space width, and joint space volume. Processing time and technical requirements were reduced compared to manual processing in previous studies.


Assuntos
Membro Posterior/diagnóstico por imagem , Imageamento Tridimensional/métodos , Animais , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Membro Posterior/anatomia & histologia , Coelhos , Ratos , Reprodutibilidade dos Testes , Microtomografia por Raio-X
18.
J Anat ; 240(3): 466-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34648184

RESUMO

Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.


Assuntos
Dipodomys , Músculo Esquelético , Animais , Articulação do Tornozelo/fisiologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologia
19.
Anat Rec (Hoboken) ; 305(10): 3088-3100, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310868

RESUMO

A variety of species undergo ontogenetic niche shifts in either diet, habitat, or both. As a result, multiple ontogenetic stages are able to take advantage of different resources and live in sympatry without competing with one another. The American alligator (Alligator mississippiensis) begins to undergo an ontogenetic niche shift in both diet and habitat at a length of 1.2 m. They transition from a terrestrial wetland environment to a riverine environment and take advantage of different dietary resources. At 1.8 m, A. mississippiensis reaches sexual maturity. Ontogenetic shifts in habitat have the capacity to alter morphology, especially limb morphology, as different age classes traverse different ecological systems. We evaluated shape trends in the scapulae, humeri, ilia, and femora using geometric morphometrics to test whether there were punctuated changes in limb shape, shape disparity, and integration corresponding to either the ontogenetic habitat shift or onset of sexual maturity. We found size to strongly correlate with limb shape but found a continuous size gradient rather than punctuated changes in size. Furthermore, we found that adults (total length > 1.8 m) had significantly higher limb shape disparity than juveniles or subadults, likely related to ontogenetic decreases in limb use and a reduction in limb constraints. Finally, we found that the forelimb and hindlimb acted as a single integrated unit and that neither the forelimb nor hindlimb was significantly more integrated than the other. Therefore, the ontogenetic niche shift itself did not impact limb morphology in A. mississippiensis.


Assuntos
Jacarés e Crocodilos , Animais , Dieta , Ecossistema , Membro Anterior/anatomia & histologia , Membro Posterior/anatomia & histologia
20.
Transplant Proc ; 53(5): 1751-1755, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33985799

RESUMO

OBJECTIVE: Transplantation of the hand or face, known as vascularized composite allotransplantation (VCA), has revolutionized reconstructive surgery. Notwithstanding, there are still several areas of improvement to mitigate immune rejection while sparing systemic adverse effects. The goal of this study was to evaluate the engraftment and viability of a genetically modified cell population pre-engrafted into a VCA transplant, to potentially act as a local biosensor to report and modify the graft in vivo. A rat fibroblast cell line genetically modified to secrete Gaussia-Luciferase (gLuc), which served as a constitutive biomarker of cells, was incorporated into a VCA to study the viability of biosensor cells in a syngeneic rat heterotopic partial hindlimb transplantation model. RESULTS: Five perfusions were first performed as engineering runs to have a stable limb perfusion protocol, followed by 3 perfusions to analyze the cell engraftment during machine perfusion, and finally 4 perfusions to study in vivo persistence of the cell biosensors. Blood samples were collected to monitor gLuc secretion during perfusion and postoperatively. A time-dependent increase in gLuc secretion in the limb perfusion outflow during machine perfusion indirectly verified the presence of biosensors within the graft. After the ex vivo perfusion, VCA hindlimbs were analyzed for near infrared fluorescence emission that showed a presence of dyed engineered cells in all areas of the limbs. Postoperatively, gLuc was detectable 4 to 5 days after transplantation (W = 16, P = .02857). This study demonstrated that engineered cells could be successfully preimplanted into VCAs-an important step toward development of an in vivo biosensor platform to use in modulating acute VCA outcomes.


Assuntos
Fibroblastos/metabolismo , Alotransplante de Tecidos Compostos Vascularizados/métodos , Animais , Fibroblastos/citologia , Fibroblastos/transplante , Membro Posterior/anatomia & histologia , Membro Posterior/patologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Modelos Animais , Imagem Óptica , Projetos Piloto , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA